Към съдържанието

Viva Cognita at Facebook
Viva Cognita at Twitter
Viva Cognita at YouTube
- - - - -
Дата на публикуване 07 сеп 2015 03:48 | от раздел 4.9. Пресичане на елементи на триъгълник в една точка
Проективно преобразувание Теорема на Пап Теорема на Паскал

4.9.13

download ggb GeoGebra (.ggb) файл

Решение:


Условие:

Даден е триъгълник ABC.

Точките A_1, A_2, B_1, B_2, C_1 и C_2 са избрани върху страните BC, CA и AB съответно, така че да бъдат на равни разстояния от средите на съответните страни. Имаме oще, че B_1C_1 \cap B_2A_2 = N, A_1C_1 \cap B_2C_2 = P, A_1B_1 \cap A_2C_2 = M, A_1B_1 \cap A_2B_2 = F, C_1B_1 \cap B_2C_2 = D и A_1C_1 \cap A_2C_2 = E.

Да се докаже, че правите DM, EN и PF се пресичат в една точка.

0 Коментари



Тази секция и съдържанието в нея са създадени като допълнение към книгата "555 задачи по геометрия" на С. Димитров, Л. Личев и С. Чобанов.
Авторите поемат пълна отговорност за съдържанието, коментарите и модерирането на дискусиите в секцията.

Viva Cognita е партньорски проект на Института по математика и информатика на БАН, Съюза на математиците в България и VIVACOM